実際、他の答えは間違っています。アグリゲーター内のDBrefフィールドでルックアップを実行することは可能であり、そのためにmapreduceは必要ありません。
ソリューション
db.A.aggregate([
{
$project: {
B_fk: {
$map: {
input: {
$map: {
input:"$bid",
in: {
$arrayElemAt: [{$objectToArray: "$$this"}, 1]
},
}
},
in: "$$this.v"}},
}
},
{
$lookup: {
from:"B",
localField:"B_fk",
foreignField:"_id",
as:"B"
}
}
])
結果
{
"_id" : ObjectId("59bb79df1e9c00162566f581"),
"B_fk" : null,
"B" : [ ]
},
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"B_fk" : [
ObjectId("582abcd85d2dfa67f44127e0"),
ObjectId("582abcd85d2dfa67f44127e1")
],
"B" : [
{
"_id" : ObjectId("582abcd85d2dfa67f44127e0"),
"status" : NumberInt("1"),
"seq" : NumberInt("0")
}
]
}
簡単な説明
$ mapを使用してDBRefをループし、各DBrefを配列に分割し、$ idフィールドのみを保持してから、$$ this.vを使用してk:v形式を削除し、ObjectIdのみを保持し、残りをすべて削除します。これで、ObjectIdを検索できます。
ステップバイステップの説明
アグリゲーター内では、DBRef BSONタイプは、2つまたは3つのフィールド(ref、id、およびdb)を持つオブジェクトのように処理できます。
行う場合:
db.A.aggregate([
{
$project: {
First_DBref_as_array: {$objectToArray:{$arrayElemAt:["$bid",0]}},
Second_DBref_as_array: {$objectToArray:{$arrayElemAt:["$bid",1]}},
}
},
])
結果は次のとおりです。
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"First_DBref_as_array : [
{
"k" : "$ref",
"v" : "B"
},
{
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
}
],
"Second_DBref_as_array" : [
{
"k" : "$ref",
"v" : "B"
},
{
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
}
]
}
dbrefを配列に変換したら、次のようにインデックス1の値のみをクエリすることで、役に立たないフィールドを取り除くことができます。
db.A.aggregate([
{
$project: {
First_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
Second_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
}
},
])
結果:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"First_DBref_as_array" : {
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
},
"Second_DBref_as_array" : {
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
}
}
次に、このように「$ myvalue.v」をポイントすることで、最終的に目的の値に到達できます
db.A.aggregate([
{
$project: {
first_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
second_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
}
},
{
$project: {
first_DBref_as_ObjectId: "$first_DBref_as_array.v",
second_DBref_as_ObjectId: "$second_DBref_as_array.v"
}
}
])
結果:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"first_DBref_as_ObjectId" : ObjectId("582abcd85d2dfa67f44127e0"),
"second_DBref_as_ObjectId" : ObjectId("582abcd85d2dfa67f44127e0")
}
明らかに、通常のパイプラインでは、ネストされた$ mapを使用して、これらの冗長な手順をすべて必要とせず、一度に同じ結果を得ることができます:
db.A.aggregate([
{
$project: {
B_fk: { $map : {input: { $map: { input:"$bid",
in: { $arrayElemAt: [{$objectToArray: "$$this"}, 1 ]}, } },
in: "$$this.v"}},
}
},
])
結果:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"B_fk" : [
ObjectId("582abcd85d2dfa67f44127e0"),
ObjectId("582abcd85d2dfa67f44127e1")
]
}
遠慮なく質問しても、説明が十分に明確であることを願っています。