必要なメソッドはupdate_one()
です。 upsert=True
を使用 ループで; insert_many()
は使用できません 2つの理由で;まず、常に挿入するとは限りません。いつかあなたは更新しています。次に、update_many()
(およびinsert_many()
)単一のフィルターでのみ機能します。あなたの場合、各更新は異なる時間に関連しているため、各フィルターは異なります。
これは、データフレーム(df_a
)を組み合わせる一般的なソリューションです。 、df_b
この場合-必要な数だけ持つことができます)。 iterrowsを使用します
データフレームの各行を取得し、日付をフィルタリングし、値をデータフレームの値に設定します。 $set
演算子は、値がすでに存在する場合は値をオーバーライドし、設定されていない場合は設定します。 upsert=True
日付に一致するものがない場合、挿入を実行します。
for df in [df_a, df_b]:
for _, row in df.iterrows():
db.mycollection.update_one({'date': row.get('date')}, {'$set': row.to_dict()}, upsert=True)
完全に機能する例:
from pymongo import MongoClient
from pprint import pprint
import datetime
import pandas as pd
# Sample data setup
db = MongoClient()['mydatabase']
data_a = [[datetime.datetime(2017, 5, 19, 21, 20), 96, 8, 98],
[datetime.datetime(2017, 5, 19, 21, 21), 95, 8, 97],
[datetime.datetime(2017, 5, 19, 21, 22), 95, 8, 97]]
df_a = pd.DataFrame(data_a, columns=['date', 'std_500_1000window', 'std_50_100window', 'std_50_2000window'])
data_b = [[datetime.datetime(2017, 5, 19, 21, 20), 98, 9, 10],
[datetime.datetime(2017, 5, 19, 21, 21), 98, 9, 10],
[datetime.datetime(2017, 5, 19, 21, 22), 98, 9, 10]]
df_b = pd.DataFrame(data_b, columns=['date', 'std_50_3000window', 'std_50_300window', 'std_50_500window'])
# Perform the upserts
for df in [df_a, df_b]:
for _, row in df.iterrows():
db.mycollection.update_one({'date': row.get('date')}, {'$set': row.to_dict()}, upsert=True)
# Print the results
for record in db.mycollection.find():
pprint(record)
結果:
{'_id': ObjectId('5f0ae909df5531ac655ce528'),
'date': datetime.datetime(2017, 5, 19, 21, 20),
'std_500_1000window': 96,
'std_50_100window': 8,
'std_50_2000window': 98,
'std_50_3000window': 98,
'std_50_300window': 9,
'std_50_500window': 10}
{'_id': ObjectId('5f0ae909df5531ac655ce52a'),
'date': datetime.datetime(2017, 5, 19, 21, 21),
'std_500_1000window': 95,
'std_50_100window': 8,
'std_50_2000window': 97,
'std_50_3000window': 98,
'std_50_300window': 9,
'std_50_500window': 10}
{'_id': ObjectId('5f0ae909df5531ac655ce52c'),
'date': datetime.datetime(2017, 5, 19, 21, 22),
'std_500_1000window': 95,
'std_50_100window': 8,
'std_50_2000window': 97,
'std_50_3000window': 98,
'std_50_300window': 9,
'std_50_500window': 10}